
0 .  0 . .  0 .  0. .  . . 0 .  0 .  . . . 0..  0 .  

ITHRUI 

t 
f 
L M- ICODE) 

3 
B --/JL/7 z AD 

I ICATEOORY) 
(NASA CR OR TMX OR AD-NUMBER) 

Defense Documentation Center 
Defense Supply Agency 

Cameron Station Alexanaria, Virginia 



I- 
I 

a 
a 
a 
a 
a 

CLASSBFICATIQN CHANGED TO UNCLASSIFIED 

BY AUTHORITY OF 
\* De c 1 a sx$L.u-aut hor it y of - 
NO. 107 dated 9 October 1956. 

NACA 

A ST I A RECLASS. List 98 
Heaearch Abstracts  and Recladsifioat ion Nosir- 

L 

OFFICE S ECURIPY ADVISOR 



7 I 

AND HYDRAZINE.AS F U E L  WITH LIQUID FLUORINE 

AS OXIDANT FOR ROCKET ENGINES 

By Sanford Gordon and Vear l  N.  Huff 

Lewis FSght Propulsion Laboratory 
Cleveland, Ohio 

FOR AEROblAUTICS 
WASH I N GTCN p 24 I 

I 1  July 29,1953 -P& r 



* e  ..e 9 
* e *  e .  
* e * .  e 
e . .  e 
e. e.. .e 

NACA RM E5308 

NATIONAL ADVISORY COMMITTEE FOR AERONAUTICS 

RESEARCH MEMORANDUM 

TKEOBETICAL PERE'ORMANCE OF MIXTURES OF LIQUID AMMONIA AND HYDMINE 

A S  FUEL WITH LIQUID FLUORINE AS OXIDANT FOR ROCKET ENGINES 

By Sanford Gordon and Vearl N. Huff 

SUMMARY 

Theoretical valae8,of rocket performance parameters fo r  two mix- 
tu res  of l iqu id  ammonia and hydrazine as fue ls  with l iquid f luorine a s  
oxidant were calculated on the  assumption of equilibrium composition 
during t h e  expansion process f o r  a wice range of fuel-oxidant and expan- 
s ion ra t ios .  The parameters included were spec i f ic  impulse, coxtibustion- 
chamber temperature, nozzle-exit temperature, equilibrium coqos i t ion ,  
mean molecular w e i g h t ,  charac te r i s t ic  velocity, coeff ic ient  of thrust, 
r a t i o  of nozzle-exit area t o  throat area, spec i f ic  heat a t  constant 
pressure, coeff ic ient  of viscosity,  and coeff ic ient  of thermal conduc- 
t i v i t y .  
impulse over a range of chaniber pressures. 

Exponents were calculated tha t  permit determination of spec i f ic  

The maximun value of spec i f ic  impulse a t  sea leve l  f o r  a chamber 
pressure of 300 pounds per square inch absolute (20.41 a t m )  vas 
313.6 pound-seconds per pound for  the f u e l  mixture containing 36.3 per- 
cent ammonia by weight and 311.9 pound-seconds per pound f o r  the f u e l  
mixture containing 87 percent ammonia by weight. 

INTRODUCTION 

Both ammonia and hydrazine have been of i n t e r e s t  f o r  a nimber of 
years as possible rocket fue ls  because of t h e i r  high theore t ica l  spec i f ic  
impulse with several  oxidants. 
on t h e i r  ava i l ab i l i t y  and cost, and on t h e i r  physical, chemical and 
handling properties. 

Extensive data e x i s t  i n  the l i t e r a t u r e  

In t e re s t  has a lso  been shown i n  mixtures of ammonia and hydrazine, 
inasmuch a s  some of the properties of the  mixtures a r e  m r e  desirable 
than those of the separate f u e l s  ( r e f .  1). 
depresses the r e l a t ive ly  high freezing point of hy&re.zinei vhareqc 
hydrazine lowers s l i gh t ly  the vapor pressure of the  ammonia. 

Ammonia, for  example, 

Fluorine i s  of i n t e re s t  a s  a rocket oxidant because of i ts  high 
performance w i t h  many fuels .  Data on i t s  propertieg a re  also available 
i n  the l i t e r a tu re .  
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Calculations were mde a t  the NACA Lewis laboratory t o  determine 
the theore t ica l  perfcrmnce of two mixtwes of l i qu id  amonia and hydra- 
zine as f u e l s  with l i qu id  fluorine as oxidant as p a r t  of a se r i e s  of 
calculations on propellants containing the chemical elements hydrogen, 
f luorine,  and nitrogen ( r e f s .  2 t o  4) and i n  sEpport of an experimental 
prcgrm. One or the  f u e l  mixtures, containing 36.3 percent amonia by 
weight, was suggested by the Bureau of Aeronautics, Department of the  
N a v y ,  snd is based on the  data from reference 1. This mixture was 
selected as a compromise between a f u e l  having a desirable  freezing 
point and one having high performance. The other  f u e l  mixture, contain- 
ing 87 percent ammonia by weight, was chosen t o  correspond t o  the  lowest 
freezing point  of any mixture of ammonia and hydrazine. 

Data were calculated on the basis  of equilibrium composition during 
ewansion f o r  a wide range of fuel-oxidant and expansion r a t io s .  
perf ormnce parameters included are specif ic  impulse, combustion-chamber 
temperature, nozzle-exit temperature, eqJilibrium composition, mean 
molecular weight, Characterist ic velocity, coef f ic ien t  of th rus t ,  r a t i o  
of nozzle-exit area t o  throa t  area, specif ic  heat a t  constant pressure, 
coeff ic ient  of viscosity,  and coeff ic ient  of thermal conductivity. 
Exponents were calculated tha t  permit determination of spec i f ic  impulse 
over a range of chamher pressures f o r  hydrogen with f luor ine  and ammonia 
with f luor ine  as wel l  as mixtures of ammonia and hydrazine with f luorine.  

The 

So that data based on the assumptions of equilibrium and frozen 
composition during the  expansion process could be  compared, several 
addi t ionai  calculat ions were mde with the assumption of frozen 
composition. 

SYMBOLS 

The following symbols a re  used i n  t h i s  report :  
. 

A 

a 

CF 

c; 

cP 

C +  

number of equivalent formulas (function of pressure and molecular 
weight; see ref. S) 

l oca l  veloci ty  of sound, ft/sec 

coef f ic ien t  of th rus t ,  Ig/c* 

molar specif ic  heat a t  constant pressure, cal/(mole) (OK) 

spec i f i c  heat a t  constant gJressuTe, c a l / (  g) (OK) 

spec i f i c  heat a t  constant volume, ca i j i g i t  A) 
\ IO.*\ 

TC37 
cha rac t e r i s t i c  velocity, f t / sec ,  gP,st/w 

?% L !4 
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accelerat ion due t o  gravity, 32.174 ft/sec' 

sum of sensible enthalpy and chemical energy, cal/mole 

sum of sensible  enthalpy and cheziical energy per uni t  weight, 
p i ( E ? )  i 

9 cal/g 
i 

nM 

spec i f i c  impulse, lb-sec/lb 

coef f ic ien t  of t h e m 1  conductivity, cal / (  sec) (cm) (OK) 

molecular weight 

nuniber of moles; exponent 

pres s we 

p a r t i a l  pressure 

universal  gas constant (consistent units) 

equivalence r a t io ,  r a t i o  of number af f luorine atoms t o  Qdrogen 
atoms 

nozzie area,  sq f t  

tciiizerature, OK 

r a t e  of flow, lb/sec 

i i  
ti 
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CI coefficient of viscosity, g / (  cm) (sec)  = poise 

P density, g/cc 

Subscripts : 

C 

e 

frozen 

1 

max 

P 

S 

t 

X 

combustion chamber 

nozzle e x i t  

composition assumed frozen 

product of conibustion 

n a x i m u m  

constant pressure 

constant entropy 

nozzle throat  

any point i n  nozzle 

CALCULilTION OF PERFORWCE DATA 

Calculatiocs of the performance data  were made with a B e l l  computer 
and an  IBM Card-Programed Electronic Calculator as described i n  refer- 
ence 2. The assumptions, thermodynamic data, and trans2ort  propert ies  
used for the  calculations are the same as those of reference 2. 

The products of combustion were assumed t o  be i d e a l  gases and 
included the  following substances: 
nitrogen NZ, fluorine.FZ, atomic f luorine F, atomic hydrogen H, and 
atomic nitrogen I?. 
35.6 ki localor ies  per mole (ref. 6 ) .  Physical and thermochemical prop- 
e r t i e s  of the  propellants were taken from references 5 t o  8 and are 
given i n  t a b l e  I. 

hydrogen f luoride HF, hydrogen H27 

The dissociation energy of F2 was taken t o  be  

Cowosition of f u e l  mixtures. - Performance calculations were made 
fo r  txo f u e l  mixtures with l iquid fluorine as the oxidant. One f u e l  
w8S 36.3 percent m a n i a  and 63.7 percent hydrazine by weight, and t h e  
other w a s  87 percent w o n l a  and 13 percent hydrcizine by weight. The 
heat of so lu t ion  was neglected i n  estimating the  heat of formation of 
each mixture. 

\ 
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Frocedure f o r  combustion conditions. - The following pa rme te r s  
were computed fo r  f ive  equivalence r a t io s  f o r  a cha.r!iber pressure of 
300 pounds per square inch absolute : combustion temperature, equilibrium 
composition, enthalpy, mean mlecular  weight, Oerivative of the logarithm 
of pressure with respect t o  the logarithm of densi ty  a t  constant entropy 
ys, specif ic  heat at  constsnt p r e s s c e ,  coef f ic ien t  of viscosity,  coeff i -  
c i en t  of thermal conductivity, and entropy of the  combustion products. 

Procedure fo r  e x i t  conditions. - Equilibrium composition, mean 
molecular weight, pressure, derivative of the logarithm of pressure with 
respect  t o  t-le logarithm of density a t  constant entropy ys ,  enthalpy of 
the  products of combusticn, spec i f ic  heat a t  constant pressure, coef f i -  
c i en t  of viscosity, and coeff ic ient  of thermal conductivity were computed 
f o r  each equivalence r a t i o  by a s s m i n g  isentro2ic  expansion fo r  three 
assigned e x i t  tenperatyres selected t o  cover the  e x i t  pressure range 
from the  nozzle-throat pressure t o  about 0.45 atmosphere. 

Interpolation. - Parameters f o r  pressures a t  and near t he  nozzle 
th roa t  and f o r  pressures ccrresponding t o  a l t i t u d e s  of 0, 10,000, 20,000, 
and 30,000 f e e t  were interpolated by means of cubic equations between 
each p a i r  of the assigned exi% temperatures. The functions and t h e i r  
f i r s t  derivatives used i n  the  interpolations are described i n  refer-  
ence 2. 

The er rors  due t o  interpolat ion were checked f o r  several cases. 
The values presented f o r  a l l  performaxe parameters appear t o  be cor- 
r e c t l y  interpolated or i n  e r ror  a t  most by two o r  th ree  uni ts  i n  the  
last place tabulated. 

Formulas. - The formulas used i n  computing the various parameters 
are given i n  reference 2 and are  summarized as follows: 

Specif ic  impulse, lb-sec/lb: 

I = 294.98 4- 
T h r o a t  a rea  per uni t  flow ra te ,  (sq f t )  (sec)/lb,  (pressure i n  a t m )  : 

Character is t ic  velocity, f t /sec:  
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Nozzle-exit area per uni t  flow ra te ,  ( s q  f t )  (sec) /lb, (pressure i n  a t m )  : 

0.04085311, 
SJW = 

Pe%I 

Ratio of nozzle-exit area t o  throat  aree,: 

(5) 

Specif ic  heat a t  constant pressure, cal / (g)  (OK) : 

Derivative of the logarithm of pressure with respect t o  the logarithm 
of density a t  constant entropy: 

ys =- 

Coefficient of viscosity,  poise: 

PM - P =  

i 

Coefficient of thermal conductivity, cal / (  sec) (cm) (OK) : 

(9) 

When composition is  assumed t o  be frozeT?, the p a r t i a l  der ivat ives  
Y i  and YA i n  equation ( 7 )  a r e  equal t o  zero, and the p a r t i a l  der iv-  

fore ,  equations (7) and (8) becszs 

a t ivee  Di and DA i n  equation (8) a re  equal t o  cpyfrozen. There- 

R I X  
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The va lues  of viscosi ty  and t h e m 1  conductivity fo r  mixtures of 

When more reliable transport  propert ies  f o r  the various 
combcstiion gases calculated by meens of equations (9) and (10) are only 
approximate. 
products of combustion become ava i lab le ,  a more rigorous procedure f o r  
computing the properties of mixtures may a l s o  be justif ied.  

THEORETICAL FE3FORMANCE DATA 

For a combustion pressure of 300 pounds Der square inch absolute, 
the calculated va lues  of the performance parameters spec i f ic  impulse, 
temperature, mean molecular weight, charac te r i s t ic  velocity, coeff ic ient  
of th rus t ,  and r a t i o  of nozzle-exit area t o  throat area a r e  given i n  
table  I1 a t  e x i t  pressures corresponding to a l t i t udes  of 0, 10,000, 
20,000, and 30,000 f e e t .  The values of pressure corresponding t o  the 
assigned a l t i t udes  were taken from reference 9. A s  an aid t o  engine 
desiga, the  values of the parmeters  within the rocket cozzle f o r  SO, 
90, 100, 110, and 120 percent of t he  th roa t  pressure a re  presented i n  
table  111. Equilibrium composition, ys, spec i f ic  heat a t  constant 
pressure, coeff ic ient  of viscosity, coeff ic ient  of t h e m 1  conductivity, 
and mean molecular weight i n  the  cor&zstion chamber a t  assigned e x i t  
temperatures a re  given i n  table I V .  The mole f r ac t ion  of F2 was 
always l e s s  than 0.00002 and therefore was not tabulated. 

Parameters. - Curves of specif ic  impulse f o r  four  a l t i t udes  are 
shown in f igure  1 plot ted against  weight percent fue l .  
value of spec i f ic  impulse fo r  the sea-level c'mve is  313.6 pound- 
seconds per pound a t  28.4 percent fue l  by weight f o r  the f u e l  mixture 
cofitainirg 36.3 percent ammonia by weight and 311.9 pound-seconds per 

87 percent amaonis. 

The maximum 

~~*mc- i *z t  24.+ per22t t  e y e 1  ?13-.w:ie;tt ~ C E  .the -fu?l. K L I & D ~  c-onto:'_nLra . .. 
The mximum values of spec i f ic  impulse and the weight percentages 

a t  which they occur were obtained by numerical d i f fe ren t ia t ion  of the 
rakulztec? velues and are shown i n  figure 2 as functions of a l t i t ude .  
The rcaxhum specif ic  impulse increases 14 percent f o r  a change i n  a l t i -  
tude from sea leve l  t o  30,000 f e e t  for both f u e l  mixtures. 

. .  
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Curves of combustion-chamber temperai*me and nozzle-exit tempera- 
ture f o r  various a l t i t t ides  a re  presented i n  f igure  3 as functions of 
weight percent fue l .  
4354c and 4306’ K f o r  the  36.3 iiiiZ 97 percent ammonia f u e l  mixtures, 
r e s p c t i v e l y  ( t ab le  11). 
occur near the  stoichiometric r a t i o .  

The maximum combustion temperatures calculated a re  

The maximums of the  exit-temperature curves 

Character is t ic  veloci ty  and coeff ic ient  of t h r u s t  are plot ted in 
f igure 4, and the  r a t i o  of the area a t  the  nozzle e x i t  t o  the area a t  
the th roa t  is  p io t ted  i n  f igure  5, against weight percent fuel .  

d 
0 
cn cu 

Curves of mean molecular weight i n  the combustion chaniber and noz- 
z l e  e x i t  a r e  p lo t ted  against  weight percent f u e l  i n  f igure  6. 

Curves of spec i f ic  heat a t  constant pressure, coeff ic ient  of v i s -  
cosity,  and coef f ic ien t  of thermal conductivity f o r  six pressures a re  
p lo t ted  i n  f igures  7, 6 ,  and 9, respectively, as  functions of weight 
percent f u e l .  

Chamber-pressure e f f e c t .  - According t o  data  of reference 4, the  
values of the parameters I, c*, and Se/St f o r  hydrazine and f luor ine  
a re  very nearly l i nea r  with the  logarithm of chamber pressure f o r  a fixed 
equivalence r a t i o  and expansion r a t io .  This l i n e a r i t y  permitted the data 
t o  be correlated according t o  the following equations: 

where Izo0, =zoo, and (Se/St)300 are the values of these parameters 
a t  300 pounds per  square inch absolute; I, c*, and 
of these parameters a t  any c-er pressure 

and expansion r a t i o s  f o r  each parameter. 
obtaining the value of 
ence 4: 

Se/St a r e  the  values 

P,; P, is  i n  pounds per 
. . ~qu4r9 14cb aQsplute;.Ep$.the expo9:nt 9 is  a function o f  fue;-oxfpant . . . . . .  

?he following equation for 
n for  specific inpulse was derived i n  re fer -  
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I n  the case of hydrazine and fluorine,  it was found that equa- 
t i o n  (13) could be used w i t h  the exponent of equation (16) o v e r a  
chamber-pressure range of 4 t o  1 wi th  a mximum e r ro r  of a few tenths of 
an impulse uni t  over a wide range of equivalence r a t io s .  
pressure co r re l a t io r  was a l s o  checked for one equivalence r a t i o  f o r  
several other propellants and found t o  apply over a similar pressure 
range ‘io about the same accuracy. The values of n w e r e  therefore com- 
puted by means of equation (16) f o r  the other propellants i n  t h i s  series 
of reports;  namely, hydrogen with fluorine,  ammonia with fluorine,  and 
mixtures of ammonia and hydrazine w i t h  f luorine.  These values of n 
w e r e  used together with the  specific-impulse data f o r  300 pounds per 
square inch absolute t o  collstruct f igure 10, which, with the a id  of 
equation (u), permits determination of spec i f i c  impulse f o r  a range of 
chamber pressures. 

This chamber- 

To i l l u s t r a t e  the use of these curves, suppose it i s  desired to 
obtain the value of spec i f ic  impulse f o r  a chamber pressure of 
1000 pounds per square inch and an expansion r a t i o  of 136.1 f o r  hydrogen 
and f luor ine  a t  t h e  s t o i c h i m e t r i c  mLxtine ratio. 
the  value of I300 is  read as 413 (o r  more precisely,  412.8 by in te r -  
polat ing t ab le  I11 of ref. 21, and the value of n is read as 0.0114. 
From equation (13), 

From f igure  10( a), 

= 412.8 (1.0138) 

= 418.5 

which coxnpares with the  value of 418.47 obtained by d i r ec t  camputation. 

n f o r  c*  and Se/St; however, these equations could not be evaluated 
numerically, inasmuch as they involve partial derivatives t h a t  have not 
been calculsted.  The value of t he  expcnents f o r  c*  and Se/St may, 
however, be computed from the values of these parameters a t  Ddo chamber 
pressures, as w a s  done i n  reference 4. The exponents camputed f o r  
hybaz ine  and f luor ine  a t  the  stoichiometric equivalence r a t i o  ( r e f .  4) 
are a b u t  the same as those f o r  hydrogen and f luor ine  a t  the same equiv- 
alence r a t i o  computed from data of reference 2. Inasmuch as the values 
of these  exponents a re  not c r i t i c a l ,  it is probably possible t o  apply 
t h e  values of n f o r  hydrazine and f luorine t o  the other propellants 
i n  t h i s  s e r i e s  of reports  w i t h  smll error .  
obtained by addi t ional  perf ormnce computations at. zcstlxi- chamber 
pressure.  

Equations similar t o  equation (16) may be derived f o r  the exponents 

. 

Greater accuracy can be 
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Correctiom f o r  nonadiabatic o r  nonisentropic processes. - Equations 
are given i n  reference 4 t ha t  permit the calculat ion of specif ic  impulse 
fo r  nonisentropic expansion or for change i n  heat cor tent  of the pro- 
pe l lan t  gases from the or ig ina l ly  calculated data.  

Frozen composition. - I n  order t o  compare data  based on the assump- 
t i ons  of equilibrium and frozen composition during the  expansion process, 
several  addi t iona l  calculations were made with frozen cornposition 
assumed. These values a r e  presented i n  table V together with correspond- 
ing equilibrium data f o r  the  stoichiometric equivalefice r a t i o  am3 f o r  two 
expansion r a t i o s .  The percentage differences i n  these parameters f o r  rJ 

\ 
% 
OI 

frozen and equiiibrium composition a r e  considerably higher f o r  expansion 
t o  an a l t i t u d e  of 30,000 f e e t  t h a n  f o r  expansion t o  sea level.  

For a combustioll pressure of 300 pomds per square inch absolute 
and an exit pressure of 1 atmosphere, the  values of mxhum specif ic  
impulse and the  percentages of fue l  by weight a t  which they occur are 
given iii the  following t ab le  f o r  frozen and equilibrium composition: 

Composition during expansion I ~ ~ ~ ~ t p l  Equilibrium I Frozen 
ammonia I i n  f u e l  percent percent 

Effect  of percentage of ammonia i n  fue l .  - A comparison of the  data 
i n  t h i s  r epc r t  with tha t  of references 3 and 4 shows a nearly l inear  
var ia t ion i n  Se/St with the  percentage of ammonia i n  an 
ammonia-hydrazine f u e l  mixture a t  constant equivalence aEd expansion 
r a t i o s .  An exmple of t h i s  variation is given i n  f igure 11, which is a 
p l o t  of I, c*, and Se/St fo r  the stoichiometric equivalence r a t i o  as 
a function of weight percentage of ammonia i n  the  fuel .  

I, c*, and 

Similar curves may be plotted f o r  any equivalence r a t i o  and expan- 
s ion  r a t i o  covered by the data i n  t h i s  report  and i n  references 3 and 4 
and may be used t o  obtain the performance of any mixture of ammonia and 
hydrazine with fluorine.  However, because these curves a re  very nearly 
l inear,  only small er rors  i n  performance r e s u l t  from l i nea r  interpolat ion 
of the tabulated data. 

Figure 7 of reference 10 shows the same nearly l inear  var ia t ion i n  
I, c*, aad 
bi f luor ide  is the oxidant. 
are also given i n  f igure  11 of t h i s  report  f o r  conparison. 

Se/St with the  percentqe of ammonia i n  the f u e l  when oxygen 
The stoichicmetric curves @f t h i s  f igure  
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hydrazine is  only about 4 specif ic  impulse units with f luorine as oxi- 
dant, bu t  i s  about 13 units w i t h  oxygen, hydrazine is  more l i k e l y  t o  be 
used with oxygen than with fluorine.  However, amnonia is  considerably 
cheaper and more avai lable  than hydrazine, and, except i n  spec ia l  appl i -  
cations, ammonia appears t o  be the more p rac t i ca l  rocket fuel .  Mixtures 
of ammonia and hydrazine when used are l i k e l y  t o  be selected f o r  b e t t e r  
physical propert ies  and greater ava i l ab i l i t y  than hydrazine and s l i g h t l y  
b e t t e r  performance and possibly higher combustion efficiency than 
anrmonia. 

Lewis Fl ight  Propulsion Laboratory 
Natiogal Advisory Committee f o r  Aeronautics 

Cleveland, Ohio, April 17, 1953 
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Sea l e v e l  

Equilibrium Frozen 

20 

30,000 f t  

Equilibrium Frozen 

TABLE V. - CObPAl3ISON OF C A E U L A ! E D  PERFORMANCES OF MIX"P3S OF LIQUID 

-~ 

288.2 

6697 
1.384 

3.125 

2029 

19.11 

AMMONIA AND HYDRAZINE WITCH LIQUID FLUGilIiE XXTH EQUILIDRIUM 

354.7 

7026 
1- 624 

9 505 

2613 

21.10 

AND FROZEN CWPOSITION ASSUMED DURING EXPANSION 

[Conibustion-chaniber pressure, 300 lb/sq in. abs; 
stoichiometric equivalence rat io]  - 

I 

Parameters 

36.3 percent NH3, 63.7 percent N2H4 by weight 

Specific impulse, 
I, lb-sec/lb 

Character is t ic  velocity, 
c*, f t / s ec  

Coefficient of thrust ,  CF 
Nozzle-exit area t o  throat 

area, Se/St 
Nozzle-exit temperature, 

Nozzle -ex i t  molecular i Te, OK 

weight, M, 

312 9 

7057 
1.427 

3 930 

3 188 

'20.86 

289 2 

6722 
1.384 

3.118 

2044 

19 15 

356 8 

7057 
1.627 

9.632 

2697 

21.27 

87 percent NIi3, l3 percent N2H4 by weight 

Specific impulse, 

Character is t ic  velocity, 

CoePficient of th rus t ,  Q 
Nozzle-exit area t o  throal 

1, I b - S € ? C / l b  

c *, f t / s ec  

mea, Se/St 

311-3 

7026 
1.426 

~ 3.912 

Nozzle-exit temperature, 
0 

Te, K 
No zz l e  -exi t  molecular 

weight, M, I 20.74 

320.6 

6722 
1.534 

6.835 

1475 

19.15 
_-- 

319.5 

669 7 
1.535 

6.855 

1465 

19.11 
-~ 

N 
*Q 
0 



!. . 

m m  m m m  .m- m m  m m m  m m  m m  
m m  m m  a m m m  

. m o m  m m m  m m m  m m m  m m  m m  
m m  m m m  me m m m  m m  m m  m m m  m m  

NACA RM E53F08 

+’ 
L: 
M 
d 

5 
x 
P 
c, 
C 
aJ 
0 
k 
aJ 
PI 

c, 
C 
ad 
ri 
ri 
a, 

k 
PI 
d 

. 

8 

d 

rl 
aJ 
-3 
F 

21 



22 W C A  RM E53F08 .. ... 
0 . .  rn 

. '  

Fuel  i n  p rope l l an t ,  pe rcen t  by u e i g h t  

( b )  Fuel ,  87 pe rcen t  ammonia and 15 percen t  hydraz ine  by weight.  

F igure  1. - Concluded. Theore t i ca l  s p e c i f i c  impulse of m i x t u r e  of l i q u i d  
airanonia and hydraz ine  as file1 with l i q u i d  f l u o r i n e  as o x i d m t .  Isen- 
t r o p i c  expansion assuming equi l ibr ium compositicn; combustion-chamber 
p re s su re ,  300 pounds per  square inch abso lu te ;  e x i t  p r e s s u r e  co r re -  
spofidiing t o  a l t i t c d e  ind ica ted .  
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.Utitu0eI it 

(a) E e l ,  36.3 Fercen? m n i a  ana 
63.7 percent hydrazine by w e i g h t .  
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Altitude, f t  

( b )  Fuel, 87 percent m n i a  and 13 
percent hydrazine by veight.  

F igure  2.  - Concluded. Fflximum theui-etLCa1 e-,ecific 
i q u l s e  and corresponding weight percent f u e l  
i n  propel lan t  of mixture of l i qu id  ammonia and 
hydrazine a s  f u e l  with l i q u i d  f luo r ine  a s  oxidant. 
I sentropic expansion assuning equilibrium coqosi-  
t i c n ;  combustion-zhamber pressure,  3 0  pounds per  
square h c h  absolute; e x i t  preesure corresponding 
t o  e l t i t u d e  indicated. 



Fuel i n  propellant, percent by weight 

(a! Fuel, 36.3 percent ammonia and 63.7 percent hydrazine by weight. 

Figure 3. - Theoretical ccmbustlon-chamber temperature and nozzle-exit temperature of 
mixture of l iquid m o n i a  and hy&azine as f u e l  with l iquid fluorine as oxidant. 
Isentropic expansion assu ing  e q u i l i b r i a  composition; combust inn-chamber pressure, 
300 >oun?,s per sqaare inch absolute; ex i t  pressure corresponding t o  a l t i t ude  indi- 
cated. 
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Fuel i n  propellant, percent by weight 

(b)  Fuel, 87 percent ammonia and 13 percent hydrazine by weight. 

Figure 3. - Concluded. Theoretical combustion-chamber temperature and 
nozzle-exit t e q e r a t u r e  of m i x t u r e  of l i qu id  tumnonia and hydrazine as 
f u e l  v i t h  l iqu id  f luor ine  as oxidant. Isentropic expansion assuming 
e q u l l i b r l - a  composition; combustion-chamber pressme, 300 pounds per 
square inch absolute; e x i t  p re s swe  correspondirg t o  a l t i t u d e  indicated. 
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1 I !  
2 8  

1.3 
20 24 

Fuel in  propellant, percent by ireight 

(a! Fuel, 36.3 percent armLonla and 63.7 percent hycirazine by weight. 

F Q w e  4 .  - P.eore:lcal ctaracterlst ic velocity ar.d coefficient sf tC-ust of mixture 
of l i q u i d  amonia an3. hydrazine a s  feel 
expansion assuming equilibrium ccqmsitlon; combustion-ctmber press.xe, 300 pounds 
per square inch absolute; ex i t  pressure corr.2sponding t o  a l t i tude  indicated. 

liqllid f:’:orine as oxidant. Isentropic 
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Fuel  i n  p rope l l an t ,  percent  by weight 

(b) Fuel ,  07  percent  ammonia and 13 pe rcen t  hydraz ine  by weight. 

F igure  4 .  - Concluded. Theore t ica l  c h a r a c t e r i s t i c  v e l o c i t y  and c o e f f l -  
c i e n t  of t h r u s t  of mixture  of l i q u i d  ammonia end hydraz ine  as f u e l  w i th  
l i q u i d  f l u o r i n e  as oxidant .  i s en t rop ic  expansion assuming equ i l ib r ium 
composition; cornbust:3>-chanber F r e s s w e ,  300 pounds per  square  Inch 
ubsoiuie; e x i t  p re s su re  corresponding t o  a l t i t u d e  ind ica t ed .  
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(a) Fuei, 36.3 percent ammonia and 63.7 percent hydrazine by weight. 

Figure 5. - Theoretical ratio of nozzle-exit z r e e  to thrrcat %?ea for  
mixture of liquid m o n i a  and hydrazine as fuel with liquid fluorine 8s 
oxidant. 
coubustion-chamber press-=e, 300 pounds per square inch absolute; exit 
presswe corresponding to altitude indicated. 

Isentropic ex2ansior assuming equilibrium composition; 
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4 

---E- 
s t o ich iome t r i c  

r a t i o  

. . . . '  
Piel 5:: p q e l l a n t ,  ~;e;ce~t by weight 

(b)  Fuel, 87  percent m o n i a  and 13 percent  hydrazine by 
weight. 

F igure  5. - Concluded. "heore t i ca l  r a t i o  of nozzle-exi t  area 

I sen t rop ic  expan- 
t o  ? k i r G a t  a r e a  f o r  uL:xture of l i q u i d  amnonil 
as f u e l  with l l q u i d  f luo r ine  as oxidant .  
s i o n  a s s m i n g  equilibrium composition; combustiori-chamber 
pressure,  300 pounds per  square inch absolute;  e x i t  
p re s su re  corresponding t o  a l t i t u d e  indicated.  

hydzazine 
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!a) Fuel, 36.3 percent ammonia and 63.7 pcrcerit hydrazine by weight. 

Figure 6. - Theoretical mean molecular weight i n  conbustion chamber and a t  nozzle ex i t  
fo r  mixture of l iqu id  ammonia and hydrazine as fuel with l i qu id  f luor ine  as oxidant. 
Isentropic expansion assumim equilibrium conposition; combustion-chamber pressure, 
300 pounds per square inch absolute; exit  pressure correspoding t o  a l t i t u d e  indi- 
cated. 
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I 24 28 32 36 40 44 

Fuel i n  propellant, percent by weight 

(b )  Fuel, 87 percent ammonia and 13 percent hydrazine by weight. 

Figure 6. - Concluded. Theoretical mean molecular weight i n  combustion 
chmber afid at  nozzle ex i t  for  mixture ol” 1igiij.i: sczimi12a nnd hy&razize 
as f u e l  with l iqu id  f luor ine  as oxidant. 
equilibrium composition; combustion-chwber pressure, 300 pounds per 
square inch absolute; exit  pressure corresponding t o  a l t i t ude  indi-  
cated. 

Isentropic expansion assuming 



.e e e.. e. NACA REI E53F08 33 

Fuel i n  propellant,  percent by weight 

(a) F’uel, 36.3 percent timmonia and 63.7 percent hydrazine 5y 
weight. 

Figure 7 .  - Theoret ical  spec i f ic  heas at  cuilsiaiit ~ ; r e s s * x e  =f ccmhns- 
t i o n  products ( including energy of d i ssoc ia t ion)  of mixture of 
l i q u i d  annuonia and hydrazine as f u e l  with l i q u i d  f iuor ine  as 
oxidant. Isentropic  expansioq t o  pressures inaicated assuming 
equilibrium composition; combustion-chmber pressure,  300 pounds 
per square inch absolute.  
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Fuel i n  propellant, percent by weight 

( b )  Fuel, 87 percent amonia and 13 percent hydrazine by 
weLght. 

1Fjmlre -0- 7. - Csncludcd. 3, ;eoret ical  Speciric heat at  constant 
pressure of combustion produc+.s (including energy of disso- 
c ia t ion)  of mixture of l iquid ammonia and hydrazine as f u e l  
with l iqu id  f luor ine  as oxidant. Isentropic expansion t o  
Fr es s-.xes indicat ed as suing equilibrium compos it ion; 
combustion-chamber pressure, 3GO pounds per square inch 
absolute. 

, 
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Fuel i n  propellant, percent by weight 

(a) Fuel, 36.3 percent arnnonia and 63.7 percent hydrazine by veight. 

Figure 8 .  - Theoretical coefficient of viscosity of co3bustion products of mixture 
of l iqu id  amnonia a?d hydrazine as fbe l  with Liquid fluorine as o x i h t .  
t rop ic  expansion t o  pressures indicated assuming e q u i l i b r i u  composition; 
combustion-chamber pressure, 300 pounds per square inch absolute. 

Isen- 
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%e?- ir? prope l lpa t ,  percent  b y  weight 

(b) Fuel, 87 pe rcen t  ammonia and 13 percent  hydraz ine  b y  weight. 

F igure  8. - Concluded. Theore t i ca l  c o e f f i c i e n t  of v i s c o s i t y  of combustion 
p roduc t s  of n i x t c r e  of liquid ammonia and hydrazine as file1 wi th  l i q u i d  
f l i i o r ine  a s  oxidati t .  I s e n t r o p i c  expansion t o  p r e s s u r e s  i n d i c a t e d  assum- 
i n g  equ i l ib r ium composition; combustion-cham5er p re s su re ,  330 pounds per 
square  inch  abso lu te .  



i 

j 

i 

i 

i 
i 

i 
! 
I 
I 
i 
1 
i 

I 
I j 

I 
I 
I 
! 

I 

1 I 
j 

Fbel i n  propellant,  percent by weight 

37 

(a) I ' ---l rur;*, ""._ ZC 1 n P r r P n t  = - - -  anonla and 63.7 percent hydrazine by weight. 

Figure 9. - Theoret ical  coe f f i c i en t  of thermal c o n h c t i v i t y  of com- 
bast ion products of m h t - u e  of 1iqvSd ammonia and hydrazine as 
fuel with liquid f luorine as oxidant. Isentropic  expansion t o  
pressures indicated assuming equilibrium coinpcsitionj combustion- 
chamber pressure, 500 pounds per square inch absolute. 
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Fuel i n  propellant, percent by weight 

(b) Fuel, 87 percent m o n i a  and 15 percent hydrazine 
by weight. 

Figure 9. - Concluded. Theoreticsl  coe f f i c i en t  of thermal 
conductivity of combustion products oÎ  mixture of l i q u i d  
ammonia and hydrazine as f u e l  with l i q u i d  f luo r ine  as 
oxidant. Isentropic  expansion t o  pressures indicated 
assuming e qui 1 ibrium compo s i t  ion j combust ion- c hamber 
pressure, 300 2ounds per squexe inch absolute. 
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Fuel i n  propellant, percent by weight 

(a) -%el, 36.3 percent ammonia and 63.7 percent hydrazine by weight; 

Figure 10. - Theoretical specific Impulse for chamber pressure of 300 

oxidant, l iquid fluorine. 

pounds per square inch absolute and exponent n for equation 
I = 1300 (P,/~oo)". 
cated assuming equilibrium composition. 

  sen tropic expansion t o  expansion r a t io  indi- 
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(b) libel, 87 percent ammonia ar,d 13 percent hydrazine 
by weight j oxidant, l i q u i d  f luorine.  

Figure? 13. - Continued. Theoretical specific impulse for  
chamber pressure of 300 pounds per square inch absolute 
anti t.x~oiieiit :: for eq-iat.ion I = 130 (Pc/300)n. Isen- 
t rop ic  expansion t o  expansion r a t i o  iniiicated assuming 
e qui l ibr  ium compo s i t  i on. 

. 



18 22 26 34 38 4 2  46  50 
PJel i n  propel lont ,  p e r c m t  by weight 

( c )  Fuel, l iquid ammonia; oxidant, liquid f l u o r i n e .  

FiSJre  10. - Continued. Theore t i ca l  spec i f ic  impulse f o r  chamber p re s su re  of 
300 pounds pe r  squwe  inch absolute  and exponent n f o r  equat ion I = 1300 
(P,/X,O)n. 
1 ibr i . i  ccEscsi t ion.  

Iseiitropie e q c n s i n r ?  t n  ex.pansion r a t i o  ind ica t ed  assuming equi-  
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(d) Fuel, l iqu id  hydrogen; oxidant, i iqu id  fluorine. 

Figure 10. - Concluded. Theoretical specific impulse for  chamber pressure of 300 pounds 
per square izch absoiute and exponent n f o r  equation I = I ~ O  (P , /~oo)~ .  Isen- 
t rop ic  expansion t o  expmsim r a t i o  inaca ted  assuming equllibriun con??osition. 
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F igu re  11. - Example of n e a r l y  l i n e a r  v a r i a t i o n  of  t h e u r e t i c a i  s p e c i f i c  
impulse, c h a r a c t e r i s t i c  ve loc i ty ,  and ra t io  of n o z z l e - e x i t  area t o  
t h r o a t  area f o r  mix tu res  of l i q u i d  ammonia and hydrazlne e s  f u e l  w i t h  
l i q u i d  f l u o r i n e  or  l i q u i d  oxygen b i f l u o r i d e  as ox idan t .  
equivelence r a t i o ;  i s e n t r c p i c  expansion assuming e q u i l i b r i u m  composi- 
t i o n ;  combustion-chamber p re s su re ,  3 0  po 
e x i t  p re s su re ,  1 atmosphere. (OF2 curves 
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